Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570112

RESUMO

Topographic maps are composed of pixels associated with coordinates (x, y, z) on a surface. Each pixel location (x, y) is linked with fluctuations in a measured height sample (z). Fluctuations here are uncertainties in heights estimated from multiple topographic measurements at the same position. Height samples (z) are measured at individual locations (x, y) in topographic measurements and compared with gradients on topographies. Here, gradients are slopes on a surface calculated at the scale of the sampling interval from inclination angles of vectors that are normal to triangular facets formed by adjacent height samples (z = z(x, y)). Similarities between maps of gradients logs and height fluctuations are apparent. This shows that the fluctuations are exponentially dependent on local surface gradients. The highest fluctuations correspond to tool/material interactions for turned surfaces and to regions of maximum plastic deformation for sandblasted surfaces. Finally, for abraded, heterogeneous, multilayer surfaces, fluctuations are dependent on both abrasion and light/sub-layer interactions. It appears that the natures of irregular surface topographies govern fluctuation regimes, and that regions which are indicative of surface functionality, or integrity, can have the highest fluctuations.

2.
Materials (Basel) ; 16(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676212

RESUMO

A top-down method is presented and studied for quantifying topographic map height (z) fluctuations directly from measurements on surfaces of interest. Contrary to bottom-up methods used in dimensional metrology, this method does not require knowledge of transfer functions and fluctuations of an instrument. Fluctuations are considered here to be indicative of some kinds of uncertainties. Multiple (n), successive topographic measurements (z = z(x,y)) are made at one location without moving the measurand relative to the measurement instrument. The measured heights (z) at each position (x,y) are analyzed statistically. Fluctuation maps are generated from the calculated variances. Three surfaces were measured with two interferometric measuring microscopes (Bruker ContourGT™ and Zygo NewView™ 7300). These surfaces included an anisotropic, turned surface; an isotropic, sandblasted surface; and an abraded, heterogeneous, multilayer surface having different, complex, multiscale morphologies. In demonstrating the method, it was found that few non-measured points persisted for all 100 measurements at any location. The distributions of uncertainties are similar to those of certain features on topographic maps at the same locations, suggesting that topographic features can augment measurement fluctuations. This was especially observed on the abraded ophthalmic lens; a scratch divides the topographic map into two zones with different uncertainty values. The distributions of fluctuations can be non-Gaussian. Additionally, they can vary between regions within some measurements.

4.
Sci Rep ; 11(1): 24197, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921210

RESUMO

Debates and doubt around the interpretation of use-wear on stone tools called for the development of quantitative analysis of surfaces to complement the qualitative description of traces. Recently, a growing number of studies showed that prehistoric activities can be discriminated thanks to quantitative characterization of stone tools surface alteration due to use. However, stone tool surfaces are microscopically very heterogeneous and the calculated parameters may highly vary depending on the areas selected for measurement. Indeed, it may be impacted by the effects from the raw material topography and not from the altered zones only, if non-altered part of the surface is included in the measurement. We propose here to discuss this issue and present a workflow involving the use of masks to separate worn and unworn parts of the surface. Our results show that this step of extraction, together with suitable filtering, could have a high impact on the optimization of the detection and thus characterization of use traces. This represents the basis for future automatic routines allowing the detection, extraction and characterization of wear on stone tools.

5.
Sensors (Basel) ; 20(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153178

RESUMO

There is a growing interest in cultural heritage preservation. The notion of HyperHeritage highlights the creation of new means of communication for the perception and data processing in cultural heritage. This article presents the Digital Surface HyperHeritage approach, an academic project to identify the topography of art painting surfaces at the scale at which the elementary information of sensorial rendering is contained. High-resolution roughness and imaging measurement tools are then required. The high-resolution digital model of painted surfaces provides a solid foundation for artwork-related information and is a source of many potential opportunities in the fields of identification, conservation, and restoration. It can facilitate the determination of the operations used by the artist in the creative process and allow art historians to define, for instance, the meaning, provenance, or authorship of a masterpiece. The Digital Surface HyperHeritage approach also includes the development of a database for archiving and sharing the topographic signature of a painting.

6.
Materials (Basel) ; 13(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32646018

RESUMO

Roping or ridging is a visual defect affecting the surface of ferritic stainless steels, assessed using visual inspection of the surfaces. The aim of this study was to quantify the morphological signature of roping to link roughness results with five levels of roping identified with visual inspection. First, the multiscale analysis of roughness showed that the texture aspect ratio Str computed with a low-pass filter of 32 µm gave a clear separation between the acceptable levels of roping and the non-acceptable levels (rejected sheets). To obtain a gradation description of roping instead of a binary description, a methodology based on the use of the autocorrelation function was created. It consisted of several steps: a low-pass filtering of the autocorrelation function at 150 µm, the segmentation of the autocorrelation into four stabilized portions, and finally, the computation of isotropy and the root-mean-square roughness Sq on the obtained quarters of function. The use of the isotropy combined with the root-mean-square roughness Sq led to a clear separation of the five levels of roping: the acceptable levels of roping corresponded to strong isotropy (values larger than 10%) coupled with low root-mean-square roughness Sq. Both methodologies can be used to quantitatively describe surface morphology of roping in order to improve our understanding of the roping phenomenon.

7.
Plast Reconstr Surg ; 145(3): 542e-551e, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32097311

RESUMO

BACKGROUND: Texturing processes have been designed to improve biocompatibility and mechanical anchoring of breast implants. However, a high degree of texturing has been associated with severe abnormalities. In this study, the authors aimed to determine whether implant surface topography could also affect physiology of asymptomatic capsules. METHODS: The authors collected topographic measurements from 17 different breast implant devices by interferometry and radiographic microtomography. Morphologic structures were analyzed statistically to obtain a robust breast implant surface classification. The authors obtained three topographic categories of textured implants (i.e., "peak and valleys," "open cavities," and "semiopened cavities") based on the cross-sectional aspects. The authors simultaneously collected 31 Baker grade I capsules, sorted them according to the new classification, established their molecular profile, and examined the tissue organization. RESULTS: Each of the categories showed distinct expression patterns of genes associated with the extracellular matrix (Timp and Mmp members) and inflammatory response (Saa1, Tnsf11, and Il8), despite originating from healthy capsules. In addition, slight variations were observed in the organization of capsular tissues at the histologic level. CONCLUSIONS: The authors combined a novel surface implant classification system and gene profiling analysis to show that implant surface topography is a bioactive cue that can trigger gene expression changes in surrounding tissue, even in Baker grade I capsules. The authors' new classification system avoids confusion regarding the word "texture," and could be transposed to implant ranges of every manufacturer. This new classification could prove useful in studies on potential links between specific texturizations and the incidence of certain breast-implant associated complications.


Assuntos
Implante Mamário/efeitos adversos , Implantes de Mama/efeitos adversos , Mama/imunologia , Contratura Capsular em Implantes/imunologia , Complicações Pós-Operatórias/imunologia , Adulto , Idoso , Doenças Assintomáticas , Biomarcadores/análise , Mama/diagnóstico por imagem , Mama/cirurgia , Implante Mamário/instrumentação , Matriz Extracelular/imunologia , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Humanos , Contratura Capsular em Implantes/diagnóstico , Contratura Capsular em Implantes/epidemiologia , Contratura Capsular em Implantes/genética , Incidência , Interferometria , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/genética , Géis de Silicone , Propriedades de Superfície , Microtomografia por Raio-X
8.
J Phys Chem B ; 121(48): 11002-11017, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29135258

RESUMO

In this study, pattern formation during evaporation of bidispersed drops (containing 1 and 3.2 µm particles) placed on a smooth substrate at different temperatures is investigated. Five distinctive deposition patterns are observed depending on the substrate temperature: a relatively uniform pattern enclosed by a disk-shaped ring, a nearly nonuniform pattern inside a thick outer ring, a "dual-ring" pattern, a "rose-like" pattern, and a set of concentric rings corresponding to the "stick-slip" pattern. At drops edge, the particle size effect leads to the formation of three rings: an outermost ring formed by the nonvolatile additives smaller than 1 µm, a middle ring built by particles with size of 1 µm, and an innermost ring formed by the mixture of 1 and 3.2 µm. For temperatures between 64 and 99 °C, the depinning of the contact line causes the same particle sorting at the other deposition lines in the interior of the drop. However, the width of the zone between the outermost ring and the middle ring at the initial edge of the drop is found to be smaller than that at the other deposition lines. The size of the width is found to be dependent on the contact angle. Particle velocity is measured by tracking particles during the evaporation. It is shown that particle velocity slightly increases with time, but it rapidly increases at the last stage of the drying process, known as "rush-hour" behavior. The sudden change in the increase of the velocity occurs between the normalized time of 0.7 and 0.8 for temperatures from 22 to 81 °C. The increasing trend of velocity with time matches well with the theoretical model. The tracer particles are also used to measure the distance between the contact line and the nearest turning point of those particles return back toward the top of the drop due to the inward Marangoni flow. It is found that this distance decreases with increasing the substrate temperature.

9.
Langmuir ; 31(11): 3354-67, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25742508

RESUMO

This study investigates pattern formation during evaporation of water-based nanofluid sessile droplets placed on a smooth silicon surface at various temperatures. An infrared thermography technique was employed to observe the temperature distribution along the air-liquid interface of evaporating droplets. In addition, an optical interferometry technique is used to quantify and characterize the deposited patterns. Depending on the substrate temperature, three distinctive deposition patterns are observed: a nearly uniform coverage pattern, a "dual-ring" pattern, and multiple rings corresponding to "stick-slip" pattern. At all substrate temperatures, the internal flow within the drop builds a ringlike cluster of the solute on the top region of drying droplets, which is found essential for the formation of the secondary ring deposition onto the substrate for the deposits with the "dual-ring" pattern. The size of the secondary ring is found to be dependent on the substrate temperature. For the deposits with the rather uniform coverage pattern, the ringlike cluster of the solute does not deposit as a distinct secondary ring; instead, it is deformed by the contact line depinning. In the case of the "stick-slip" pattern, the internal flow behavior is complex and found to be vigorous with rapid circulating flow which appears near the edge of the drop.


Assuntos
Nanopartículas/química , Temperatura , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...